Tag Archives: radiation

Radiation in Space

Many people have asked me what the dangerous radiation levels are.  The answer that I’ve found is 100,000uSv in a year.  Cancer has been directly linked to this exposure value.  Jet pilots and Flight Attendants can expect to get around 6000uSv per year if they fly 800 hours.  That’s not to say radiation can’t make you sick at lower levels.  It can.  But it’s really hard to link things like the common cold to a couple days of flying at high altitude.  This is what has caused so much confusion about it and why it’s so hard to find concrete data on what radiation can do.  The best advice I can give to aircrew and frequent flyers is to maintain a healthy lifestyle.  Any detrimental affects to the mild doses we receive are probably magnified by poor eating and other health habits.

So what’s the radiation level at the International Space Station?

I’ve been getting measurements at a maximum altitude of 8.5 miles.  The International Space Station orbits at about 280 miles up.  The average astronaut on the ISS, during their 6 month stay, gets a whopping 70,000 uSv!  So you can see why they don’t, normally do more than 6 months.

In fact, man will never conquer space travel without handling the radiation problem.  Low Earth Orbit is about the best we can do for extended periods of time, right now.  The Van Allen belts extend from roughly 600 miles to 22,000 miles above the Earth.  These are belts of high levels of radiation that men can’t stay in for long.  Above this, the effects of the Earth’s magnetosphere are so diminished, that solar activity is uninhibited.

Throughout the years of the Apollo moon landings, there were regular solar flares.  A couple of them would have cooked the astronauts going to the moon.  The success of these missions was mostly luck of timing.  The future of space travel depends entirely on finding the best ways to shield against radiation.


Tagged , ,

Around the world in 8 days

I’ve flown half way round the world and back during the past week and a half.  I’ve crisscrossed the Arabian Sea and the Atlantic Ocean.  I’ve been within spitting distance of the equator and seen the snow-covered landscape of Greenland!

All my raw results are posted below.  You be the scientist.  Can you make any conclusions of your own?  Does changing altitude make much of a difference at the equator?  Does it make a difference over Greenland?  What’s the average dose at 41,000′ down south?  How about up north?  What’s the dosage rate over Europe?

Riyadh to Maldives:

Multi Frame 1

Maldives to Riyadh:

Multi Frame 2

Riyadh to Paris:

Multi Frame 7

London to Detroit:

Multi Frame 3

I’ve flown over Greenland many times, but it’s always either been covered in cloud or too dark to see.  I got lucky on this flight and captured these pictures at high noon.  Notice how long the shadows are, even two months past the winter solstice?  These shots are at 62 degrees North latitude.

Greenland 1-resized

The depth of the snow in the picture above must be thousands of feet deep.  It fills in the valleys completely, leaving the craggy mountain peaks poking out like they were pine trees on an upper mountain slope.

Below is a gigantic glacier, ending in the frozen ocean.

Greenland 2-resized

Detroit to Greenville:

Multi Frame 4

Greenville to London:

Multi Frame 5

How much fuel does it take to fly from South Carolina to London?  About a truck and a half worth!


London To Riyadh:

Multi Frame 6

Tagged , , , ,

3X The Measured Radiation

There is more up there than what my Gamma detector is picking up.  Judging by the NAIRAS website, my detector is picking up 1/3 of the total ionizing radiation at flight altitude.  This is the case in the northern latitudes north of about the 35 degree parallel.  South of this, my meter seems to pick up most everything.

I’m trying to ascertain what types of radiation are up there so that I can get meters to measure the total spectrum.  For now, though, when I’m up north, I have to simply multiply my reading by 3 to get an estimate of the total dose.  This information is really sobering as I thought 4.0 uSv/hr was quite a high dose rate while flying over the Atlantic.  The actual dose rate was around 12 uSv/hr!

I have also been searching for a dosimeter that pilots, flight attendants and frequent flyers can carry.  I’ve concluded that one dose not exist…at least not one that is affordable.  When I’ve figured out what types of radiation make up the majority of the spectrum, I’ll see what I can do about getting one constructed.

Still, the results I’m getting with my Polismart Gamma detector continue to be fascinating.  And the ability to store the data, graph it and map it is, actually, quite amazing, considering how affordable the device is.  I know, I’m biased because I’m beta testing it.  But really, the Polismart has worked flawlessly and the App has exceeded my expectations.  My hat is off to the Polimaster folks who designed this gadget.  It’s really great.

So, finally, with all the flying I’ve done lately, I’d like to say that I’m getting a very firm grasp on where the radiation is and what you can do about it.  What I’ve discovered, to date, can be summarized like this:

  1. Aircrew get more radiation than nuclear power plant workers.
  2. Aircrew are classified as radiological workers by the NCRP (National Center for Radiation Protection)
  3. On average, north of 35 degrees north-latitude, radiation increases rapidly above about 35,000′.  Pilots who do not need to go higher than that, operationally, might as well stay at a lower altitude if they want to avoid high radiation levels.
  4. Altitude has little affect on the radiation level when flying at latitudes south of about 30 degrees north.  I’ve seen almost zero variation between 35,000′ and 45,000′ when flying from 30 degrees all the way down to the equator.
  5. Flying over the North pole is the most hazardous of all.  Radiation levels will normally be 12-18 micro-Seiverts per hour, at 40,000′.  From 31,000′ upwards, the radiation level will double about every 6500′.  Pilots need to check on solar flare activity because, sometimes, levels can exceed 100 uSv/hr.
  6. An affordable dosimeter, that accurately measures all of the different types of radiation at flight altitude, does not seem to be readily available.  There is 3x more up there than just Gamma.  I think the other main components are radioactive electrons, protons and X-Rays.
  7. Currently, the best prediction center, I’ve found, for flight radiation, is the NAIRAS website.

It’s time to take this to the next level and start including the sun’s solar flares into the equation and see if I can pick up the daily variations of flux.  Because the real danger of upper altitude radiation comes from solar flares directed at Earth.  Levels can exceed 150uSv/hr during the strongest flares.  And that’s dangerous.


Radiation Over the North Atlantic

I did my first Atlantic crossing in the Gulfstream IV, a couple days ago.  I can’t tell you how cool it is to be in a jet with such great endurance.  I’ve flown a lot of smaller jets that couldn’t even make it across the US without stopping for go go juice.  So it’s really nice to be in a jet with some LEGS!  The flight was non-stop from Savannah, GA to London.  Flight time was seven and a half hours.



Most airliners fly between 30,000′ and 39,000′.  We were up at 41,000′ getting our silly heads cooked like microwave lasagnas!  That’s good news for my blog, but bad news for my hairline!

NAT3-resized  NAT2-resized

According to the data, above, my accumulated dose of Gamma rays went up from my year’s total of 51.12uSv to 75.39.  My calculator’s telling me that’s an accumulation of 24.27uSv in one day!  And, that’s why aircrew need to have dosimeters.

The average radiation at 41,000′ was 4.0 uSv/hr over the North Atlantic ocean.

The track, above, has a strange gap around New York.  That’s what happens when the detector comes unplugged from the iPad.  It keeps recording the radiation data, faithfully, but it normally gets its GPS coordinates from the iPad.  Without the iPad it defaults to 00 oo’oo” North, 00 00’00″West, which is by Africa, as you can see.  When I realized the detector was not all the way plugged in, I fixed it and made sure it stayed in for the rest of the trip across the pond.

Now, here’s something you need know!  I have just found out that there is more radiation up there than just Gamma rays.  Gamma should be the majority fraction, but I need to get more data about the contributing quantities of the other types of radiation.  The following is a list of the types of ionizing radiation that I’m aware of:

  • Gamma ray
  • X-Ray
  • Alpha (a kind of particle)
  • Beta (another kind of particle)
  • Neutron (the unattached, high-energy kind)
  • Electron (These are, supposedly, a different kind than electrical electrons.  A physicist told me it was too complicated to explain!)
  • Proton (the unattached, high-energy kind)

My next project is to find out what levels of radiation these different types contribute to the whole.  When I figure it out, I’ll let you know!

Tagged , , , , , ,

Are radiation levels at high altitudes dangerous?

My interest in radiation at high altitude is to find out, for myself, exactly what the levels of in-flight radiation are.  Are they dangerous?  Should we take an interest in them?  Should aircrew and frequent flyers be concerned?  Or are they low enough as to not cause a worry.  I’m no rabble-rouser and so I would be delighted if I find that radiation in flight is nothing to be concerned about.  If so, this will be a very short blog.  However, if the radiation levels seem pretty high, then I’ll delve into ways your own radiation exposure (and mine too!) can be mitigated over the long run.  Perhaps a healthy person will not suffer from radiation as much as someone who’s unhealthy.  Who knows?  I’m going to figure all this out.

I am a Gulfstream pilot and I fly all over the world.  My aircraft can go as high as 45,000’ so it’s going to be a good plane to get some good data.

Polimaster, maker of radiation detectors, has given me a slick gadget that connects to an iPhone or iPad and reads gamma radiation.  It’s called the Polismart II (model 1904) and It’s a brand new product for them.  I’m helping them beta test it, so this blog will also be attached to their website.

I fly between 500 and 800 hours a year.  I’m not an airline pilot, I’m a corporate pilot (I fly the rich guys) so I probably don’t fly as much as the airline guys.  Some of those guys can approach 1000 hours a year in the cockpit.  And let’s not forget that a lot of them spend a lot of time in the back, commuting to and from work.  This blog is really for them and the frequent flyers they fly.  The flight attendants, pilots and frequent flyers, flying short and long-haul routes, around the world, should know about in-flight radiation levels.  According to some, they receive more radiation, on the job, than in any other industry.  That may sound shocking, but let’s just wait and see.  I’m going to get some solid numbers and maybe I’ll find out that it’s really not that bad.

So, if you’re interested, stay tuned and let me start doing some trips with my new radiation detector.  I’ll be posting the numbers and the iPhone screen shots from my trips.  No matter if the numbers are high or low, I’ll post them.  And you can have the same data that I’m getting and can draw your own conclusions.

Tagged , , , , , ,